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Vacuum energy in quantum field theory with external potentials 
concentrated on planes 

M Bordag, D Hennigt and D Robaschik 
Sektion PhysikjWB Quantenfeldtheorie, Universitit Leipzig, Augustusplatz 10, 0-7010 
Leipzig, Federal Republic of Germany 

Received 16 July 1991, in final farm 3 April 1992 

Abstract. In the presence of an idealized potential on two parallel planes represented by 
two one-dimensional S-functions at x,= - d / 2  and x , = + d / 2  we discuss the Feynmann 
propagators for relativistic scalar and spinor fields. These propagators take into account 
bound states, scattering states and resonances. The Casimir energy for this configuration 
is calculated. For massive fields the Casimir force decreases exponentially with rising 
distances. In the scalar case we find an attractive force and in the spinor case a repulsive 
force. An attempt to treat the Same problem for a massive scalar field using non-relativistic 
quantum field theory leads to a vanishing Casimir force. 

1. Introduction 

The vacuum energy of quantized fields is an interesting and fundamental quantity. If 
there are external parameters in the theory, then the vacuum energy depends on these 
parameters, which can lead to observable consequences. The most popular example 
is the Casimir effect [l] where the vacuum energy depends on the distance between 
two conducting plates. The corresponding force has been observed [2]. To date, many 
configurations and boundary conditions have been considered (see the reviews [3,4] 
for example). 

In the usual treatment of the Casimir effect one investigates the electromagnetic 
field only and considers the plates as perfect conductors represented by the correspond- 
ing boundary conditions. It is, however, possible to idealize a metallic plate with 
respect to the behaviour of the electrons by a potential well (Sommerfeld’s potential 
pot model), especially by an idealized potential well represented by a &function. This 
makes sense because the energy states in such a potential contain only one bound state 
(to each degree of freedom) and the usual continuum states [ 5 , 6 ] .  So far estimating 
further contributions to the Casimir force we are able to represent the two metallic 
plates with respect to the electron field by two external S-type potential wells separated 
by the distance d [71. 

In this paper we calculate the Casimir energy in the presence of the potential 

eA,(x) = a( 6( x3 - d , )  + S(x3 - 4) )  (1.1) 

for massive and massless scalar and spinor fields. Because of the difficulties of the 
formulation of a scalar field theory with a singular external potential the scalar model 

t Permanent address: Fachbereich Physik, lnstitut fur Thcontirche Physik, Humboldt Univcrsital Invalidcn- 
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has very restricted validity. The action of potential (1.1) is reformulated as boundary 
conditions to the fields at the positions of the plates. In this connection the resulting 
new boundary conditions can be viewed as a generalization of the usually taken 
Dirichlet boundary conditions controlled by a new parameter a. However, if we think 
about idealized metallic plates then we expect two contributions. First we have to take 
into account the vacuum energy and second the energy of the filled levels. Here we 
will study the vacuum energy only. First calculations of this problem have been 
performed by Mamaev and Trunov [71 for the special case of relativistic scalar fields 
under the influence of repulsive 8-potentials. 

Here we use a consequent field-theoretic formulation for the calculation of the 
Casimir effect. We discuss the known expressions [8] of the propagators in the presence 
of the &potential. These propagators take into account bound states, scattering states 
and resonances. They are represented by closed expressions in momentum space. As 
is well known, this is possible for a very limited number of potentials (homogeneous 
fields, periodic fields, Coulomb field, special potential wells) [9] only. More solvable 
examples are known in non-relativistic field theory (see [IO] and references therein). 

The vacuum energy is calculated as the vacuum expectation value of the energy 
momentum tensor. Using point splitting as the regularization procedure we can directly 
insert the derived Green functions. As a result we obtain that for massive fields the 
Casimir force decreases exponentially with increasing distance. This justifies in prin- 
ciple the standard procedure for the determination of the Casimir force by taking into 
account the photon field only. All other possible fields (electron field, proton field, 
etc) lead to exponentially decreasing contributions which can be neglected for large 
distances. In the scalar case we find an attractive force and in the spinor case a repulsive 
force. This may be in accordance with speculations on supersymmetry [ l l l .  

An attempt to treat the same problem for a massive scalar field using non-relativistic 
quantum field theory leads to a vanishing Casimir force. Usually one considers that 
the Casimir effect is determined by the infrared part of the zero point energy. For 
massive particles this part of the spectrum should be well approximated by a non- 
relativistic treatment. From our result it may follow that also in the massive case the 
change in the infrared spectrum from relativistic theory cannot be approximated 
sufficiently well by non-relativistic theory. 

The paper is organized as follows. We introduce the necessary field-theoretic 
notation in section 2. The propagators are discussed, taking into account the solutions 
of the field equation in the next section. The Casimir energy is calculated in the fourth 
section. The corresponding investigations in non-relativistic quantum field theory under 
the influence of the potential Ao(x)  (see (1.1)) are given in section 5.  

2. Basic notation 

In this section we give the necessary field-theoretical notation, which is close to that 
used in standard textbooks [ 121. In the scalar case the starting point is the Lagrange 
density 

If we compare it with a Lagrangian with minimal coupling to a gauge field Ao- S(x3 - d )  
then we have taken into account the most singular part of this interaction, 
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cp*cppS(xl)S(x3) - const cp*cppS(x,), in a regularized way. The parameter a, which can be 
understood as the strength of the potential, has the dimension of an inverse length. 
This is the simplest procedure to obtain a well-defined problem for concentrated 
potentials within scalar field theory [7,8]. Note that in this way the charge sensitivity 
ofthe external potential is lost and the potential couples in the same manner to particles 
and antiparticles. This is one reason why the scalar model has very limited validity, 
but it allows a simple treatment in comparison with the following spinor model. The 
necessary formulae are: the field equation 

( a z  - 2 ; as( x, - d i )  + m2 cp( x )  = 0 ) 

( J2-2  7 as(x ,  -$)+ m2 ’ D C ( x ,  y )  = 6 ( x  - y )  ) 
the causal propagator 

(2.2) 

(2.3) (OITcp(x)v* (~)10)=  -rDE(& Y )  

and the energy-momentum tensor 

T , ” ( X )  = J,cp(x)a”cp*(x) + J,cp(x)a*cp*(x) - g , ” 2 ( x ) . <  (2.4) 

The formulae for the spinor field are similar. As the Lagrange density we choose 

2 ( x )  = m ( i A - m ) $ ( x )  

(A= A,y’, A, = Jp - ieAp), then the propagator Sc(x, y )  obeys 

(i~-m)’S‘(x,y)=S(x-y) 

as well as 

K I T ~ $ ( Y ) ~ O ) =  is%, Y )  

whereas the energy-momentum tensor takes the form 

We consider the potential A,(x) ,  given by (l.l), which is concentrated on parallel 
planes perpendicular to the x, axis, intersecting it at x,  = d, ( i  = 1,2). Without loss of 
generality we choose d,.? = +d/2, so that d is the distance between the planes. Because 
the potential is concentrated on the planes it is possible to rewrite it as a boundary 
condition. This means that the equation of motion is considered for x3 f d, only and 
accompanied by boundary conditions at x, = d,. The form of the energy-momentum 
tensor remains unchanged because it has to be considered for x, # d,.  

In the scalar case the boundary condition is 

and the field is assumed to be continuous at x, = d,. 
In the spinor case the field equation is 

Z 



4486 M Bordag et al 

Again it can be replaced by the free field equation supplemented by a boundary 
condition [8,13], 

R@(x)lx,-d,-O= @(X)lx3-d,+0 (2.8) 

R=exp(iy0y'S) 

without any problems. R has the properties of a rotation matrix: 

where tan(8/2) = a/2. Note that the parameter [I, i.e. the strength of the potential, is 
dimensionless in this case. 

3. Solutioos and propagators for 8-potentials 

Here we investigate the propagators, taking into account the solutions of the field 
equations. We start with the scalar case and discuss the more complicated spinor case 
afterwards. All the considered solutions factorize into a plane wave part in the 
(x&, x,. x2) directions and other x,-dependent functions. 

3.1. Scalar fields 

In the case with one &potential located at x,=O there exists a set of symmetric 
scattering states 

(piY(x3)= $cos( 57 k,x,l+tan-'(;)) 

(k  = 0,. . . , m), a set of antisymmetric scattering states 

(ha., = 0,. . . , CO), and for 0 < a < m a bound state solution (k = -ia) 

( P ~ ~ ~ ~ ~ ( x ~ )  =Jii  exp(-aIx3l). (3.3) 

Note that these solutions appear for particles and antiparticles in the same way. For 
a < 0 there is no bound state solution because the potential is re ulsive For o > m 

imaginary. In this case the binding energy of the bound state is larger than the energy 
gap between particle and antiparticle states. This situation is called 'level diving' and 
is well known (see [9] for example). We do not consider this situation here and assume 
a<m. 

In the case of two &potentials there are similar solutions. The symmetric scattering 
states are 

and if k:+k:<aZ-mZ the corresponding energy b= 4- k,+k, [I + m  becomes 

(k = 0,. . . , m), where 8 is given by 
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The antisymmetric scattering states are 

with 8,,,= -kd/2+cot-'[cot(kd/2)-2a/kl [31. 

state 
For a > 0 there are, additionally, two bound state solutions. The symmetric bound 

with yIy = a( 1 + and the antisymmetric bound state 

d 
e'"% -e-'"=, for Ix,~ <- 

2 
d 

(3.7) 
(- 1 + E (x,) e-7Jx31 for IXI1 > - I 2 

1 
CP'u"d(X3)=,/(2/a) e?ud -2d 

with ~ , , ~ = a ( l - e - ~ - ~ ) .  
Next, we list the expressions for the propagators [8]. We denote the propagator 

with boundary conditions by 'DO'(x, y) and split it into the free space part and the 
boundary-dependent part according to 

'D' (x ,y )=Dc(x ,  y ) - D ' ( x , y ) .  (3.8) 

We note from (2.2) that s ( x , y )  obeys the homogeneous equation 

(U+ "x, y )  = 0 (3.9) 

everywhere except on the boundary, where it is determined by the boundary condition. 
Because of the symmetry properties of the system it is useful to apply a mixed 
representation. To derive it we start with the free field propagator D"(x,y) and carry 
out the k3 integration [ 141, and get 

where in the following a =0,1,2 and 

r = J k i -  k: - k: + m2+ i&. 

In the presence of one 6-potential we get the representation 

(3.10) 

(3.11) 

(3.12) 

Let us study this representation in some detail. First we remark that, in the limiting 
case a + 0, 3 ( x ,  y )  vanishes and 'DC(x, y )  (3.8) reduces to the free field propagator, 
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as it must. Next, we consider the integrand as a function of ko for fixed k, and k,. 
The inte ration ath y lies in the complex %-plane. There are two cuts starting from 

J-ee k,=* Jg--e k:+ k:+m2 arising " from the square root in r (see (3.11)). The U er sheet is 
defined by I m r > O  for real ko between the cuts (i.e. for I%ls k:+k:+m2) .  The 
integration path y lies just in this sheet. The cuts represent the scatterin states (3 1) 
and (3.2). Now, from the 6-potential two poles arise at % = f k + k,+ m 'as 
solutions of the equation r = ia. For 0 < a < m these poles lie on the upper sheet and 
correspond to stable bound states. For a > m (and k:+ k $ <  a'- m 2 )  they move to the 
imaginary axis and level diving occur. For a < O  they are still present, but on the lower 
sheet (Im r = a < 0), and represent resonances. The limit la1 --f CC can be performed just 
- for negative a where the poles cannot conflict with the integation path 'y. In this case 
D'(x, y )  (see (3.12)) turns to the known expression satisfying the Dirichlet boundary 

In the presence of two &potentials the boundary-dependent part of the propagator 
1141. 

takes the representation [8] 

+(di++dd (1 - io / r )  e-ir(l.,-d,l+ly,-d,l)+ ( ia / r )  e-ir(15-d~l+lY,-d~l+d) 
X 

( r - ia)2+aze2ird 
(3.13) 

The validity of this representation can be checked. We now consider the following 
properties. First, for d, = d, (i.e. d = 0 )  we reproduce (3.12) for one &potential of 
strength Za. Further, let us consider the analytic structure in the h-plane. Again there 
exist two cuts corresponding to the scattering states. From the zeros of the denominator 
on the RHS of (3.13), i.e. from the solutions of the equation 

eird =+( l+ ir /a )  (3.14) 

we obtain poles where the sign + (respectively -) corresponds to the antisymmetric 
(respectively symmetric) bound states. For pure imaginary r = iy/d (y real) these 
equations are 

(3.15) 

For ad > -a* with a* = 0.278 464 (a* is a solution of a* = 1 +In a * )  they have real 
solutions y*(ad), shown in figure 1. 

e-y = f (1 - y /  ad). 

Flguun 1. The solutions y * ( a d )  of (3.14). 
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These solutions have the followin inter retation for different values of the para- 
meter ad. By means of b= * Jg_E k2+ k:+ m2 y:  they determine the location of the two 
poles for each solution in the ko plane. For O r y , < J k : +  k:+m2 the poles lie in the 
upper sheet on the real axis between the cuts, for y* > Jk:+ k:+ m2 the corresponding 
poles move to the imaginary ko axis and level diving occurs. For y ,  < 0 the poles move 
to the real axis on the lower sheet and become unphysical. It is interesting to note the 
possibility of y ,  > 0 and y -  < 0 (for the same value of ad) in the region 0 < ad < 1. In 
this case there is one bound state and one resonance for each particle and antiparticle 
only. 

To get the general solutions of (3.14) we represent r by 

= (x+iy)/d (3.16) 

with real x and y. Then, (3.14) splits into two equations: 

eCYcosx=*(l-y/ad)  

e-y sin x = fx f ad. 

Substituting y from the second equation into the first equation we get 

(3.17) 

x cot x+lnlsin x/xl= ad -In a d  (3.18) 

which has a set of solutions x. - mn ( n  = 1,2, . . .). The corresponding y .  are all negative. 
Thus the corresponding poles in the ko plane lie on the lower sheet. They represent 
the resonances occurring between the planes with the &potentials. For ad +CO they 
move to the real k,, axis with x. = m, y,, = 0. This is the case for Dirichlet boundary 
conditions and (3.13) tums out to be the corresponding expression [14]. In this light 
we can regard the boundary conditions corresponding to &functions as a possible 
modification of the Dirichlet boundary condition controlled by the parameter a. In 
this physical picture conditions (2.7) and (2.8) could model the penetrability of 
boundaries. 

3.2. Spinorfields 

The spinor case can be treated in close analogy to the scalar one. However, the formulae 
are more complicated. We first give the propagator [8] which is needed for the 
calculation of the Casimir effect and then we will consider the bound state solutions. 
In the free field case the propagator Sc(x, y )  reads in the preferred mixed representation 
as 

Note that we use here and in the following @=p,.yL ( p  =0,1,2,3) and @=p.y" 
(a = 0,1,2). For the general case with the boundary conditions (2.8) we make the ansatz 

(3.20) 'SC(X, y )  = S'(x, y )  -s;(x, y )  

with 

(3.21) 
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where i, j are the planes with &potential and K ,  is a spinor-valued matrix to be 
determined from the boundary conditions as 

) A-' 
a8P+A-'P_; -P+ 

2mN -P-; a8P_A-'P+ ir 

K..=-AA-'8,+- a 
'I 2m (3.22) 

The notation is P,= (m+d  * yT)/zm, (I = -(2im/r) tan(s/2), 8 =eird 

2 A-'=!( A 0 a ) (3.23) y --(2-P+-P-) 
a 

A = yo+- (P++ P-) 
2 

with 

A = 1 -tan(;)2 -? tan(;) (3.24) 

Po d 
m m 

P,,OP, = - P, P: = P, P*PT=- Pl 

P,A-'P,A-~P, = Pl 
(3.25) p:+p:+m2 1 

$ - - A  
P,A-'P --P,yQP,. 

h2m2 

The quantity N in the denominator is defined as 

N = l -  - (p:+p:+m2). (3 
Its zeros determine the spectrum, like (3.14) in the scalar case. The condition N = 0 
can be rewritten in the form 

(3.26) 

We add the spinor propagator in the case of one 8-potential (at x3 = d , ,  for example). 
It is given by (3.20) and (3.21) with 

po + i r  cot(8) = *Jp:+p: + m2 eird. 

(3.27) 
a 

K K, = O  for i or j #  1. 
2m 11 - 

The spectrum follows from the condition A =0, which can be rewritten as 
P o =  E(4)Jp:+p:+m2cos(a). (3.28) 

Here, in contrast to the scalar case, the symmetry between the particle and antiparticle 
is broken. Therefore, for a potential attractive with respect to the particles, the pole 
with po> 0 lies in the upper sheet of the pa plane and corresponds to a bound state, 
whereas the poie wiin po<O iies in ine iower sheet and corresponds io a resonance 
state for the antiparticle. An essential difference from the scalar case is that here no 
level diving occurs because lpol < m for all p , ,  p2  and for all values of the strength 
a = 2 tan(it/2) of the &potential. Similar considerations are true for (3.26) representing 
the case of two 8-potentials. 

For completeness we derive here the bound state solutions +(nl (x3)  e-ipx/2m This 
is a non-ifiviai iask, 
representation of the propagator. For this reason we remark that the propagator'sS'(% Y )  
can be represented in the form 

simpiesi way is io ex;fBci ;:lese s o p ~ ~ o i i s  fiOiii ;he kgo.;;n 
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(e>O). Here (n) denotes the quantum number which characterizes the solutions in 
addition to pI and p 2 ,  and E(")  are the corresponding energy values. The solutions 
$(")(x3) obey the equation 

J ( d - m + i u ' 2 ) * d x 3 )  = O  for x3 # d,.  

In the case of one 8-potential the index (n) for the bound states consists of two spin 
states distinguished by a=*]. The energy is given by p o =  E(4)Jp:+p:+m2 cos(@) 
(see (3.28)). In the case of two &potentials it includes two solutions of (3.26) (denoted 
by E*) for the energy, each of which has two spin states (with U = *l).  Furthermore, 
the bound states are characterized by Ipol<m and, consequently, r=  
J p & p : - p : -  m2= iy with real y. Now we compare the above-derived representations 
(3.20), (3.21) of 'Sc(x, y) with (3.29). Closing the integration path for po in (3.29) as 
well as in (3.21) we obtain a contribution from the poles at po=  E* which contains 
the bound states. Of course, there are further contributions related to the scattering 
states. From the residuum of the poles we get 

z * & 3 ) G m  
("I 

bound 

where the residuum is taken at po = E'. It is clear that it is just ?(x, y)  which contributes 
to the pole term. In the case of one 8-potential we have (n) = U = * 1 and make the ansatz 

Taking into account (3.27) we get 

Now it is easy to prove that 

with 

2m 
N=-dZyA'(p,,+m) cos(t9). 

XI=(;) x2=(Y) a 

In the case of two &potentials a similar ansatz reads as 

with pa= E". For the spinors *(.- we get from K, (see (3.22)) 

(3.30) 

(3.31) 
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with 

where X is a normalization factor. 

4. Calculation of the Casimir energy 

The aim is the calculation of the distance-dependent part of the vacuum energy. For 
simplicity we first consider scalar field theory: One possibility is the investigation of 
the energy-momentum tensor Tqu (see (2.4)). Its vacuum expectation value can be 
expressed by the 1-product of the fields. Using (2.2) and the field equation we get 

where x # y is used as a regularization. The first term on the RHS of (4.1) contains the 
free field contribution; because of &distance independence we omit it. In further 
calculations we take into account Dc only. 3ut this contribution is not finite. As 
distance-independent divergent contributions we can furthermore eliminate terms 

First we consider the contribution from one 8-potential. Inserting (3.12) for D"(x, y) 
connected with the &potentials of two individual planes. - 

into (4.1) we get 

and after a Wick rotation k,+ik, 

with y =Jk:+ k:+ k:+ m2, p = 1,2,4. So the energy density of one &potential is a 
finite quantity. Near the plane with the 8-potential, i.e. for x3+ 0, it diverges as (x')-~, 

Second, inserting (3.13) for D'(x,y) into (4.1) we get the contribution of two 
2s cxpcc!cd frnm dimer?sinr?a! cnjderztio!ls. 

&potentials: 

(1 - ia / r )  e2i'lx,-dll+ ( i a / r )  e"'llx,-d,l+i',-d,l+d)+ (d,-d2) 
x 

( r - i a ) 2 + a 2  eZird 
This is a finite expression for x3 # d,, where it diverges as for the contribution of one 
&potential. So we subtract the individual contributions from a single &potential at 
x ,=d ,anda tx ,=d2 :  
(01 T:Pb(x)lO) 

= (OlTi,"(x)lO)-(01T% - dl)lO)'(OIT~~(x - d2)10) 
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whereby the energy is shifted by an amount which is independent of the distance d 
between the planes with S-potentials. For the distance-dependent part of the energy 
density per unit area 

+m 

Eo= I-, dx3(OlTpb(x3)10) (4.2) 

we get 

2a2ki[d - l / ( a+ i r ) ]  e2ird 

( 2 ~ ) '  r [ ( a+ i r )2 -a2  e2ird] (4.3) 

This formula represents the Casimir energy between two &potentials. In order to 
discuss its behaviour for different values of the parameter d we simplify (4.3). The 
analytic structure of the integrand contains an additional pole at r = ia which corres- 
ponds to the bound state of one individual 8-potential introduced by the subtraction 
procedure in (4.2). So the Wick rotation b + i k 4  is possible and we get 

with y=Jk:+k:+k:+m2. The integration over the angles leads to 

with y = m .  It is interesting to consider some limiting cases. For this reason we 
change the integration variable k to y =-- m and obtain 

Now, for md >> 1, Eo decreases exponentially, and to leading order we have 

The other limiting case is the massless one: 

In the limit ad + -CC we get the known result corresponding to the Dirichlet boundary 
conditions, 

and for weak S-potentials we get 

(4.6) 

(4.7) 

These results show the expected behaviour, especially the exponential suppression in 
the massive case. In all these cases the Casimir force is attractive. 

In the case of the spinor field the calculations are similar; however, they are 
technically more complicated. The vacuum expectation value of Too (using (2.5) and 
(2.6)) is 
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Using (3.20), (3.21) and omitting the distance-independent contribution containing 
Sc(x, y )  we get 

x[@+m-y3re(dj-x3)]} e i r ( ~ z ~ ~ d ~ ~ + ~ x ~ r d i ~ ~  

which is finite for x3 # d, ( i  = 1,2). As in the scalar case we subtract the contributions 
from individual &potentials at x3 = d,. By means of (3.27) this results just in the 
omission of the first term in (3.22) for ICg. Now, we consider the contributions to the 
vacuum energy resulting from three different regions of the x3 axis separately. Defining 

d / 2  

E2 = dx3(OlGb(x)10) 

E'= dx3(OlGb(x)10) 

E' = d ~ ~ ( O / ~ % ~ ( x ) l O )  
- d / Z  

we have 

E = E ' +  E 2 +  E'. 

In the region between the &-potentials, i.e. for -d/2<x,< d /2  we get 

x (dP_A-'P+A-'P_A-'P+ e2irx> + a8P+A-'P_A-'P+A-'P_ 

- P+A-'P-A-'P+ - P_A-'P+A-~P-) .  

Using (3.25) as well as the traces 

TI yOP+yoP_ = 2( p: +p:+ m2)/m2 Tr yoP, = 2po/m 

we get for E 2  the contribution 

For the region d /2<x3  we obtain 

With the help of the auxiliary formulae 

P+A-'P*=- Ir P, with p=po- iy tan(9 /2)  
Am 
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we obtain for E’ 

Clearly, from the region x3< -d/Z we get the same contribution, i.e. E l =  E 3 .  
Finally, to make these expressions more transparent, we consider two limiting cases. 
First, we assume md >> 1. In (4.8) for E’ we perform the Wick rotation and consider 

the leading Contribution only. The result is 

(4.10) 

which shows the expected proportionality to exp(-Zmd). It can he shown that the 
contribution from E’ and E’ are by one power l lmd  smaller in this limiting case. 
Note that the Casimir effect is a long-distance effect by comparing the distance d with 
the Compton wavelength of the corresponding massive particle. Therefore, exponen- 
tially vanishing contributions are suppressed in comparison with those of massless 
particles. 

The other limiting case is the massless one. Here all contributions (i.e. from E* 
and from E I and E’) are of equal order and the energy for small 9 is 

(4.11) 

Note that the Casimir force for the spinor case is repulsive. This is in contrast to 
the scalar case. From the viewpoint of supersymmetry [ll] one may believe that 
spinor contributions have an opposite sign in comparison to the scalar ones. In [7] 
other boundary conditions are used, leading to an attractive force for the spinor 
case too. 

5. The non-relativistic approximation 

It is interesting to compare the calculation of the Casimir force corresponding to 
massive fields in relativistic and non-relativistic quantum field theory. A heuristic 
argument could be as follows. For the Casimir effect only low frequencies are essential. 
The reason is that the high frequencies cancel themselves when the free space contribu- 
tion is subtracted. On the other hand, the low-energy behaviour for massive fields is 
considered to be well described by a non-relativistic approximation. We show that this 
is not the case. From the foregoing sections and from [7] we know that for large m 
any Casimir force decreases exponentially as exp(-Zmd). This result is not reproduced 
in non-relativistic quantum field theory. 

We consider the Schrodinger equation 

(iJ, - I?)$(x) = 0 (5.1) 

with the Hamiltonian 

1 v 2  
H = - - + e A o ( x )  

2m 
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where the potential is given by (1.1). The second quantized field operators are 

#(x) =I e""J@:(x)a; 

#*(x) =I e-'=*'@.(x)a; 
0. 

0. 

with 

[ a i ,  d l  = &.+ 

A@&)= E=@=(X). (5.2) 

and @-(x) are the eigenfunctions of the Hamiltonian 

Taking into account a symmetric operator ordering in the Hamiltonian we get for the 
ground state energy 

This can be represented with the help of the retarded propagator A(x, y )  as 

Because of the retardation property of the propagator (5.4) we use f - t ' > O  as a 
regularization. 

Consider first the free field case. Here the propagator in the mixed representation 
is 

where r is given by 

r = J 2 m b -  k: - k:+iE. 

(5.5) 

This is the only change introduced by non-relativistic field theory in comparison with 
the corresponding relations (3.10), (3.1 1) for relativistic field theory. With this change 
all the further formulae of section 3 for &potentials are valid in this case too. 

Now, the calculation of the distance-dependent part of the vacuum energy Eo per 
unit area is performed in the same way as in section 4 and we arrive at 

Here the difference between the definitions of the energy, i.e. between (4.1) and (5.4) 
as well as (5.6) are taken into account. Further, we used t >  1' as a regularization. Now 
the analytic structure of the integrand on the RHS of (5.7) differs from that in the 
corresponding expressions in section 4 because r contains 2 m b  instead of k:. There- 
fore, the cut and the poles on the left side of the b plane are absent. So, if the 
integration path could be closed in the upper half plane the result would be zero. Now 
we argue that the regularization f > f '  can be removed when the result is finite. This 
is possible. For example, we can give the distance d a positive imaginary part d + d + ie. 
Then exp(2ird) makes the integral convergent and it is possible to set t - t ' = O .  Note 
that this is closely connected with the fact that the Casimir force is finite. So the 
non-relativistic energy (5.7) vanishes: E P )  = 0. 

i\ 
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To understand this result better we consider the more simple case of two plates, 
represented by Dirichlet boundary conditions. We perform a direct summation of the 
zero point energies with the help of the 6-function method. Here, X.(., represents 
integration over the moments k ,  and k2 parallel to the plates and summation over the 
perpendicular frequencies k, = m / d  ( n  = 1 , 2 , .  . .). The energy is e(aI = 
[ k : + k : + ( m / d ) 2 ] / 2 m  and we get 

where U is a regularization parameter with U +  1 finally. Equation (5.8) can be easily 
calculated: 

8 ~ ( 2 m ) " ( l + u )  

- - 4 ~ ( 2 m ) " ( l + ~ )  - 1  
( 9 2 + 2 " l ( - 2 - 2 u )  d (5.9) 

where 5 is the 6-function. In the limit U+ 1 we clearly get Ej;"=O because of the 
zeros of the [-function. 

These examples allow the conclusion that the Casimir effect of a massive field has 
an essential relativistic character and cannot be calculated within a non-relativistic 
theory. In our case the non-relativistic ground state energy of the Schrodinger field 
theory does not depend on the parameters of the system [ 1 5 ] .  In a pure mathematical 
sense this means that the large mass limit (i.e. mc2+ CO) in relativistic theory has to be 
performed after calculating the ground state energy. An interchange of this operation 
is not allowed, as the expansion ko= m + k;.)/2m +. . . cannot be used. So the heuristic 
argument that high frequencies are not essential for the Casimir force fails. 
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